- Home
- Standard 11
- Mathematics
Trigonometrical Equations
normal
જો $\cos \,x = \frac{{2\cos y - 1}}{{2 - \cos y}},x,\,y\, \in \,\left( {0,\pi } \right),$ હોય તો $tan(x/2)cot(y/2) =$
A
$\sqrt 2$
B
$\sqrt 3$
C
$1/\sqrt 2$
D
$1/\sqrt 3$
Solution
Given $\cos x=\frac{2 \cos y-1}{2-\cos y}$
Applying compoundo and dividendo rule
$\frac{1+\cos x}{1-\cos x}=\frac{2 \cos y-1+2-\cos y}{2-\cos y-2 \cos y+1}$
$\Longrightarrow \frac{2 \cos ^{2} x / 2}{2 \sin ^{2} x / 2}=\frac{1+\cos y}{3(1-\cos y)}=\frac{\cos ^{2} y / 2}{3\left(2 \sin ^{2} y / 2\right)}$
$\Longrightarrow \tan ^{2} \frac{x}{2}=3 \tan ^{2} \frac{y}{2}$
$\Longrightarrow \tan \frac{x}{2} \cot \frac{y}{2}=\sqrt{3}$
Standard 11
Mathematics